AI-Ti (Aluminum-Titanium)

V. Raghavan

Recently, [1990Sch], [2000Ohn], [2001Bra], and [2001Ste] reported new results on the phase equilibria of this binary system. Crystal structure data on the binary phases are summarized in Table 1 [2001Bra]. The complete phase diagram is shown in Fig. 1.

On the Al-rich side, TiAl₃ has two crystal modifications: TiAl₃ (HT) ($D0_{22}$ -type tetragonal) forms peritectically at 1387 °C [1990Sch] and decomposes eutectoidally at 735 °C [2001Bra]. TiAl₃ (LT) forms at ~950 °C and is stable at low temperatures. A metastable form of TiAl₃ (AuCu₃-type cubic) also has been reported [2001Bra]. Ti₅Al₁₁ is a superstructure based on the AuCu-type tetragonal phase, with the subcell parameters of a = 0.3953 nm and c = 0.4104 nm at 66 at.% Al and a = 0.3918 nm and c = 0.4154 nm at 71 at.% Al. It forms peritectically at 1416 °C and decomposes eutectoidally at 995 °C to TiAl₂ and TiAl₃ (HT). TiAl₂ (HfGa₂-type tetragonal) forms congruently at 1215 °C from Ti_5Al_{11} and is stable at low temperatures. A metastable form of TiAl₂ (ZrGa₂-type, orthorhombic) was found by [2001Bra] in the as-cast alloys. $Ti_{1-x}Al_{1+x}$ (AuCu-type te-tragonal) is stable between 1445 and 1170 °C. Ti_3Al_5 is a low-temperature phase forming below 810 °C. TiAl, often designated γ , has the $L1_0$, AuCu-type tetragonal structure with a = 0.4000 nm and c = 0.4075 nm at 50 at.% Al and a = 0.3984 nm and c = 0.4060 nm at 62 at.% Al [2001Bra].

On the Ti-rich side, the updated diagram is quite different from the version in [Massalski2] and shows that (β Ti) [body-centered cubic (bcc), often denoted β] and liquid undergo a peritectic reaction to yield (α Ti) [hexagonal closepacked (hcp), also denoted α] at a high temperature of ~1490 °C. [2000Ohn] found that (β Ti) undergoes the A2 (bcc) \rightarrow B2 (CsCl-type ordered bcc) transition in the temperature range of ~1425 to 1125 °C. The Ti-rich intermediate phase Ti₃Al, commonly called α_2 , has the D0₁₉, Ni₃Sn-type hexagonal structure.

References

- **1990Sch:** J.C. Schuster and H. Ipser, Phases and Phase Relations in the Partial System TiAl₃-TiAl, *Z. Metallkde.*, Vol 81 (No. 6), 1990, p 389-396
- **2000Ohn:** I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida, Phase Equilibria in the Ti-Al System, *Acta Mater.*, Vol 48, 2000, p 3113-3123
- **2001Bra:** J. Braun and M. Ellner, Phase Equilibria Investigations on the Aluminum-Rich Part of the Binary System Ti-Al, *Metall. Mater. Trans. A*, Vol 32A, 2001, p 1037-1047
- 2001Ste: F. Stein, L.C. Zhang, M. Palm, and G. Sauthoff, Al-Ti Alloys with Al-Rich TiAl: Phase Equilibria, Evolution of Phases, and Strength of Lamellar TiAl + Al₂Ti Alloys, *Struct. Intermet. 2001, Proc. Int. Symp. 3rd,* K.J. Hemker, Ed., TMS, 2001, p 495-504

Fig. 1 Al-Ti binary phase diagram [2000Ohn, 2001Bra]

Section II: Phase Diagram Evaluations

Phase	Composition, at.% Al	Pearson symbol	Space group	Prototype	Lattice parameter, nm
TiAl ₃ (HT)	74.5-75.0	<i>t1</i> 8	I4/mmm	TiAl ₃	a = 0.3849
					c = 0.8609
TiAl ₃ (LT)	~75	tI32	I4/mmm		a = 0.3877
					c = 3.3828
Ti ₅ Al ₁₁	66-71	(a)			a = 0.3953
					c = 0.4104(b)
TiAl ₂	66-67	<i>tI</i> 24	I4 ₁ /amd	HfGa ₂	a = 0.3970
					c = 2.4309
$Ti_{1-x}Al_{1+x}$	63-65	tP4	P4/mmm	AuCu	a = 0.4030
					c = 0.3955
Ti ₃ Al ₅	62	tP32	P4/mbm	Ti ₃ Al ₅	a = 1.1293
					c = 0.4038
TiAl(γ)	50-62	tP4	P4/mmm	AuCu	a = 0.4000
					c = 0.4075(c)
$Ti_3Al(\alpha_2)$	~20-39	hP8	$P6_3/mmc$	Ni ₃ Sn	a = 0.5782
					c = 0.4629
(a) Tetragonal. (b) S	Subcell parameters at 66 at.%	Al. (c) At 50 at.% Al			

Table 1 Al-Ti crystal structure and lattice parameter data